Click here to sign in with or
Researchers in Japan have developed a new technique for creating polymers. This discovery is expected to lead to the development of plastics that are more environmentally friendly, heat resistant, and transparent.
Previous research, such as that performed by Nobel laureate Giulio Natta's group in the 1960s, created polymers using a technique called asymmetric cationic polymerization. However, their group could not control the molecular weight. Controlling the molecular weight of polymers, especially those used in the engineering of plastics, is important because it affects many of the properties of the plastics. Stiffer-flowing, high molecular weight polymers offer the best performance as they are tougher and more resistant to chemical and environmental damage.
A group that includes Lecturer Mineto Uchiyama and Professor Masami Kamigaito of the Graduate School of Engineering at Nagoya University, and Professor Kotaro Sato of the Tokyo Institute of Technology, has successfully synthesized optically active polymers with controlled molecular weight. To develop the combination technique of asymmetric living cationic polymerization, they combined two existing techniques: their "living cationic polymerization" and Natta's "asymmetric cationic polymerization." This new technique creates polymers with controlled molecular weight and high optical activity that can be chemically controlled. Their findings are reported in the Journal of the American Chemical Society.
Monomers are the building blocks of polymers and come from various sources. To test their new technique, the group started with benzofuran, which can be derived from natural resources and is a precursor of the polymer polybenzofuran. Benzofuran forms rigid polymers with a high glass transition temperature and high transparency. It is also chemically recyclable. Its high glass transition temperature means that the polymer maintains its hard shape, even at extreme temperatures. Therefore, benzofuran is useful for the creation of sustainable transparent thermoplastics.
As Lecturer Uchiyama explains, "Our novel polymerization method could control both the chirality and the molecular weight of polybenzofuran, leading to unique optically active polymer materials with highly controlled structures. This research is expected to lead not only to the development of new precision polymerization reactions but also to the development of new functional polymer materials. Since polybenzofuran has the properties of a highly heat resistant plastic, it is expected to become a new material as a heat resistant resin with optical activity."
Furthermore, Uchiyama sees numerous uses for the compound. "Polybenzofuran has a structure similar to polystyrene, which is one of the main plastics used daily for various products, such as plastic containers, cases, and packaging," he says. "While polybenzofuran is not used as a commercially available plastic, it has a stiffer molecular structure and a higher glass transition temperature than polystyrene. We see it being used as a new plastic with good thermal properties. Furthermore, its unique optical properties could give additional functionalities." Explore further Developing new smart soft materials: Synthesis of a pH-responsive dendronized poly(substituted methylene)s More information: Mineto Uchiyama et al, Asymmetric Cationic Polymerization of Benzofuran through a Reversible Chain-Transfer Mechanism: Optically Active Polybenzofuran with Controlled Molecular Weights, Journal of the American Chemical Society (2022). DOI: 10.1021/jacs.2c02569 Journal information: Journal of the American Chemical Society
Provided by Nagoya University Citation: Creating more environmentally friendly, heat resistant and transparent plastics (2022, August 9) retrieved 19 August 2022 from https://phys.org/news/2022-08-environmentally-friendly-resistant-transparent-plastics.html This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.More from Other Physics Topics
Use this form if you have come across a typo, inaccuracy or would like to send an edit request for the content on this page. For general inquiries, please use our contact form. For general feedback, use the public comments section below (please adhere to guidelines).
Please select the most appropriate category to facilitate processing of your request
Thank you for taking time to provide your feedback to the editors.
Your feedback is important to us. However, we do not guarantee individual replies due to the high volume of messages.
Your email address is used only to let the recipient know who sent the email. Neither your address nor the recipient's address will be used for any other purpose. The information you enter will appear in your e-mail message and is not retained by Phys.org in any form.
Get weekly and/or daily updates delivered to your inbox. You can unsubscribe at any time and we'll never share your details to third parties.
Medical research advances and health news
The latest engineering, electronics and technology advances
The most comprehensive sci-tech news coverage on the web
This site uses cookies to assist with navigation, analyse your use of our services, collect data for ads personalisation and provide content from third parties. By using our site, you acknowledge that you have read and understand our Privacy Policy and Terms of Use.